Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Mech Methods. 2013 Oct;23(8):566-75. doi: 10.3109/15376516.2013.803270. Epub 2013 Oct 7.

Apoptosis induction and histological changes in rat kidney following Cd-doped silica nanoparticle exposure: evidence of persisting effects.

Author information

1
Laboratory of Clinical Toxicology, Salvatore Maugeri Foundation IRCCS, University of Pavia , Pavia , Italy and.

Abstract

Abstract Histological and immunocytochemical methods were used to examine rat's renal responses to intratracheal (i.t.) instillation of model cadmium-containing silica nanoparticles (Cd-SiNPs) and also exploring whether these potential modifications would be associated with toxicogenomic changes. Renal effects of Cd-SiNPs (1 mg/rat), CdCl2 (400 µg/rat), SiNPs (600 µg/rat) or 0.1 ml saline (control), assessed 7 and 30 d post-i.t., included (i) induction of apoptosis, (ii) cell proliferation and (iii) the overall toxic response evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, proliferating cell nuclear antigen (PCNA) immunohistochemistry as well as Periodic acid Schiff and Hematoxylin & Eosin, respectively. Area-specific apoptosis was observed in all treatment groups, the cortex and inner medulla being the most affected regions: the apoptotic changes were apparent seven days post-exposure in both areas and were still observable in inner medulla at day 30. Apoptotic frequency increase was more pronounced in Cd-SiNP-treated animals compared to either CdCl2 or SiNPs groups. At day 7, the observed parallel increased number of PCNA immunopositive cells may be associated with an enhanced cell proliferation aimed at replacing the damaged cells. Histopathological findings demonstrated comparable morphological changes of the renal structure (at glomerular and tubular levels) occurring after all treatments at both time-points and more markedly 30 d after instillation. Both morphological and toxicogenomic evaluations confirmed long-lasting renal effects of Cd-SiNPs on apoptosis and regulatory processes. Bare SiNPs i.t. administration caused morphological and apoptotic changes but did not modify gene expression profile in kidney. These findings substantiate the notion that multiple assays and an integrated testing strategy should be recommended to characterize toxicological responses to nanoparticles in mammalian systems.

PMID:
23650964
DOI:
10.3109/15376516.2013.803270
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center