Format

Send to

Choose Destination
Theranostics. 2013 Mar 23;3(5):306-16. doi: 10.7150/thno.6007. Print 2013.

Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield.

Author information

1
ZJU-SCNU Joint Research Center of Photonics, Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University-SCNU, 510006 Guangzhou, P. R. China.

Abstract

Relatively low quantum yield (QY), time-consuming scanning and strong absorption of light in tissue are some of the issues present in the development of upconversion nanoparticles (UCNPs) for biomedical applications. In this paper we systematically optimize several aspects of optical excitation of UCNPs to improve their applicability in bioimaging and biotherapy. A novel multi-photon evanescent wave (EW) excitation modality is proposed for UCNP-based microscopy. The scanning-free, ultrahigh contrast and high spatiotemporal resolution method could simultaneously track a few particles in a large area with a speed of ³⁺up to 350 frames per second. The HeLa cancer cell membrane imaging was successfully performed using NaYF₄: 20% Yb³⁺/2Er³⁺ targeting nanoparticles. Studies with different tissues were made to illustrate the impact of optical property parameters on the deep imaging ability of 920-nm band excitation. In the experiments a semiconductor laser with a 920 nm wavelength was used to excite UCNPs in tissue phantom at five depths. Our experimental and computational results have shown that in UCNP-based diffusion optical imaging with 920-nm laser excitation could lead to larger imaging depth range compared to traditional 974-nm excitation in a wide dynamic range of tissue species. As the QY is power density dependent, a pulsed laser is proposed to improve the QY of UCNPs. This proposal is promising in drastically increasing the imaging depth and efficiency of photodynamic therapy.

KEYWORDS:

deep imaging; pulsed excitation; quantum yield.; total internal reflection; upconverting

PMID:
23650478
PMCID:
PMC3645057
DOI:
10.7150/thno.6007
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Ivyspring International Publisher Icon for PubMed Central
Loading ...
Support Center