Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Neurosci. 2013 Apr 30;7:66. doi: 10.3389/fnins.2013.00066. eCollection 2013.

Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression.

Author information

1
Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada.

Abstract

Since the remarkable discovery of adult neurogenesis in the mammalian hippocampus, considerable effort has been devoted to unraveling the functional significance of these new neurons. Our group has proposed that a continual turnover of neurons in the DG could contribute to the development of event-unique memory traces that act to reduce interference between highly similar inputs. To test this theory, we implemented a recognition task containing some objects that were repeated across trials as well as some objects that were highly similar, but not identical, to ones previously observed. The similar objects, termed lures, overlap substantially with previously viewed stimuli, and thus, may require hippocampal neurogenesis in order to avoid catastrophic interference. Lifestyle factors such as aerobic exercise and stress have been shown to impact the local neurogenic microenvironment, leading to enhanced and reduced levels of DG neurogenesis, respectively. Accordingly, we hypothesized that healthy young adults who take part in a long-term aerobic exercise regime would demonstrate enhanced performance on the visual pattern separation task, specifically at correctly categorizing lures as "similar." Indeed, those who experienced a proportionally large change in fitness demonstrated a significantly greater improvement in their ability to correctly identify lure stimuli as "similar." Conversely, we expected that those who score high on depression scales, an indicator of chronic stress, would exhibit selective deficits at appropriately categorizing lures. As expected, those who scored high on the Beck Depression Inventory (BDI) were significantly worse than those with relatively lower BDI scores at correctly identifying lures as "similar," while performance on novel and repeated stimuli was identical. Taken together, our results support the hypothesis that adult-born neurons in the DG contribute to the orthogonalization of incoming information.

KEYWORDS:

depression; exercise; hippocampus; interference; neurogenesis; pattern separation

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Support Center