Send to

Choose Destination
Biochemistry. 1990 May 22;29(20):4773-82.

DNA repair within nucleosome cores of UV-irradiated human cells.

Author information

Biochemistry/Biophysics Program, Washington State University, Pullman 99164-4660.


We have compared the distributions of repair synthesis and pyrimidine dimers (PD) in nucleosome core DNA during the early (fast) repair phase and the late (slow) repair phase of UV-irradiated human fibroblasts. As shown previously [Lan, S. Y., & Smerdon, M. J. (1985) Biochemistry 24, 7771-7783], repair synthesis is nonuniform in nucleosome core particles during the fast repair phase, and the distribution curve can be approximated by a model where repair synthesis occurs preferentially in the 5' and 3' end regions. In this report, we show that, during the slow repair phase, [3H]dThd-labeled repair patches are much more uniformly distributed in core DNA, although they appear to be preferentially located in sequences degraded slowly by exonuclease III. This change in distribution cannot be explained by an increase in patch size during slow repair, since the size of these patches actually decreases to about half the size measured during the fast repair phase. Furthermore, PD mapping within core DNA at the single-nucleotide level demonstrated that, at least within the 30-130-base region from the 5' end, there is little (or no) selective removal of PD during the fast repair phase. However, the nonuniform distribution of repair synthesis obtained during fast repair throughout most of the core DNA region (approximately 40-146 bases) is accounted for by the nonuniform distribution of PD in core DNA. The near-uniform distribution of repair synthesis observed during slow repair may result from more extensive nucleosome rearrangement and/or nucleosome modification during this phase.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center