Send to

Choose Destination
Mol Genet Genomics. 2013 Jun;288(5-6):285-95. doi: 10.1007/s00438-013-0748-6. Epub 2013 May 3.

Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe.

Author information

Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.


Schizosaccharomyces pombe and Saccharomyces cerevisiae are excellent model organisms to study lifespan. We conducted screening to identify novel genes that, when overexpressed, extended the chronological lifespan of fission yeast. We identified seven genes, among which we focused on SPBC16A3.08c. The gene product showed similarity to Ylr150w of S. cerevisiae, which has affinity for guanine-quadruplex nucleic acids (G4). The SPBC16A3.08c product associated with G4 in vitro and complemented the phenotype of an S. cerevisiae Ylr150w deletion mutant. From these results, we proposed that SPBC16A3.08c encoded for a functional homolog of Ylr150w, which we designated ortholog of G4-associated protein (oga1 (+)). oga1 (+) overexpression extended the chronological lifespan and also decreased mating efficiency and caused both high and low temperature-sensitive growth. Deleting oga1 (+) resulted in caffeine-sensitive and canavanine-resistant phenotypes. Based on these results, we discuss the function of Oga1 on the chronological lifespan of fission yeast.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center