Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device

Biomaterials. 2013 Jul;34(22):5588-93. doi: 10.1016/j.biomaterials.2013.04.014. Epub 2013 Apr 26.

Abstract

Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air
  • Animals
  • Brain / cytology*
  • Cell Differentiation / drug effects
  • Cell Separation / instrumentation*
  • Cell Separation / methods*
  • Cell Size / drug effects
  • Cell Survival / drug effects
  • Membranes, Artificial
  • Microfluidic Analytical Techniques / instrumentation*
  • Microscopy, Fluorescence
  • Oligodendroglia / cytology*
  • Oligodendroglia / drug effects
  • Oligodendroglia / metabolism
  • Plastics / pharmacology*
  • Porosity / drug effects
  • Pressure
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cells / cytology*
  • Stem Cells / drug effects
  • Stem Cells / metabolism
  • Temperature

Substances

  • Membranes, Artificial
  • Plastics