Format

Send to

Choose Destination
See comment in PubMed Commons below
Gait Posture. 2013 Sep;38(4):818-23. doi: 10.1016/j.gaitpost.2013.04.002. Epub 2013 Apr 28.

Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

Author information

1
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, USA. Electronic address: ktakaha@ncsu.edu.

Abstract

Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking.

KEYWORDS:

Ankle; Energy; Foot; Gait; Prosthetics

PMID:
23628408
DOI:
10.1016/j.gaitpost.2013.04.002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center