Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Cell Neurosci. 2013 Apr 19;7:49. doi: 10.3389/fncel.2013.00049. eCollection 2013.

Neurotransmitter signaling in the pathophysiology of microglia.

Author information

1
Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU Leioa, Spain ; Achucarro Basque Center for Neuroscience-UPV/EHU Zamudio, Spain ; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas Leioa, Spain.

Erratum in

  • Front Cell Neurosci. 2013;7:107.

Abstract

Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology.

KEYWORDS:

ATP; glutamate; microglia; purinergic and glutamatergic receptors

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Support Center