Format

Send to

Choose Destination
Plant J. 2013 Aug;75(3):515-25. doi: 10.1111/tpj.12218. Epub 2013 Jun 13.

Phosphorylation of p27(KIP1) homologs KRP6 and 7 by SNF1-related protein kinase-1 links plant energy homeostasis and cell proliferation.

Author information

1
Institut de Biologie des Plantes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8618, Bâtiment 630, Université Paris-Sud, Saclay Plant Sciences, Orsay Cedex 91405, France.

Abstract

SNF1-related protein kinase-1 (SnRK1), the plant kinase homolog of mammalian AMP-activated protein kinase (AMPK), is a sensor that maintains cellular energy homeostasis via control of anabolism/catabolism balance. AMPK-dependent phosphorylation of p27(KIP1) affects cell-cycle progression, autophagy and apoptosis. Here, we show that SnRK1 phosphorylates the Arabidopsis thaliana cyclin-dependent kinase inhibitor p27(KIP1) homologs AtKRP6 and AtKRP7, thus extending the role of this kinase to regulation of cell-cycle progression. AtKRP6 and 7 were phosphorylated in vitro by a recombinant activated catalytic subunit of SnRK1 (AtSnRK1α1). Tandem mass spectrometry and site-specific mutagenesis identified Thr152 and Thr151 as the phosphorylated residues on AtKRP6- and AtKRP7, respectively. AtSnRK1 physically interacts with AtKRP6 in the nucleus of transformed BY-2 tobacco protoplasts, but, in contrast to mammals, the AtKRP6 Thr152 phosphorylation state alone did not modify its nuclear localization. Using a heterologous yeast system, consisting of a cdc28 yeast mutant complemented by A. thaliana CDKA;1, cell proliferation was shown to be abolished by AtKRP6(WT) and by the non-phosphorylatable form AtKRP6(T152A) , but not by the phosphorylation-mimetic form AtKRP6(T152D). Moreover, A. thaliana SnRK1α1/KRP6 double over-expressor plants showed an attenuated AtKRP6-associated phenotype (strongly serrated leaves and inability to undergo callogenesis). Furthermore, this severe phenotype was not observed in AtKRP6(T152D) over-expressor plants. Overall, these results establish that the energy sensor AtSnRK1 plays a cardinal role in the control of cell proliferation in A. thaliana plants through inhibition of AtKRP6 biological function by phosphorylation.

KEYWORDS:

Arabidopsis thaliana; Kip-related protein; SNF1-related protein kinase-1; cell proliferation; energy homeostasis; phosphorylation

PMID:
23617622
DOI:
10.1111/tpj.12218
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center