Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2013 Apr 24;33(17):7220-33. doi: 10.1523/JNEUROSCI.4676-12.2013.

Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease.

Author information

1
Departments of Neurological Surgery and Neurology, University of California, San Francisco, California 94143, USA.

Abstract

In Parkinson's disease (PD), striatal dopamine denervation results in a cascade of abnormalities in the single-unit activity of downstream basal ganglia nuclei that include increased firing rate, altered firing patterns, and increased oscillatory activity. However, the effects of these abnormalities on cortical function are poorly understood. Here, in humans undergoing deep brain stimulator implantation surgery, we use the novel technique of subdural electrocorticography in combination with subthalamic nucleus (STN) single-unit recording to study basal ganglia-cortex interactions at the millisecond time scale. We show that in patients with PD, STN spiking is synchronized with primary motor cortex (M1) local field potentials in two distinct patterns: first, STN spikes are phase-synchronized with M1 rhythms in the theta, alpha, or beta (4-30 Hz) bands. Second, STN spikes are synchronized with M1 gamma activity over a broad spectral range (50-200 Hz). The amplitude of STN spike-synchronized gamma activity in M1 is itself rhythmically modulated by the phase of a lower-frequency rhythm (phase-amplitude coupling), such that "waves" of phase-synchronized gamma activity precede the occurrence of STN spikes. We show the disease specificity of these phenomena in PD, by comparison with STN-M1 paired recordings performed in a group of patients with a different disorder, primary craniocervical dystonia. Our findings support a model of the basal ganglia-thalamocortical loop in PD in which gamma activity in primary motor cortex, modulated by the phase of low-frequency rhythms, drives STN unit discharge.

PMID:
23616531
PMCID:
PMC3673303
DOI:
10.1523/JNEUROSCI.4676-12.2013
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center