Format

Send to

Choose Destination
PLoS One. 2013 Apr 17;8(4):e61331. doi: 10.1371/journal.pone.0061331. Print 2013.

Temporal trends of HLA, CTLA-4 and PTPN22 genotype frequencies among type 1 diabetes in Continental Italy.

Author information

1
Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy.

Abstract

The incidence of type 1 diabetes has, progressively, increased worldwide over the last decades and also in Continental Italian population. Previous studies performed in northern European countries, showed, alongside a general increase in the disease incidence, a decreasing frequency of the highest risk HLA genotype in type 1 diabetes populations, thus emphasizing the role of environmental factors. The aim of the study was to evaluate whether a decreasing trend of high risk HLA, CTLA-4 and PTPN22 genotypes would be present in type 1 diabetes subjects of Continental Italy, a country considered at low incidence of the disease compared to northern European populations. N = 765 type 1 diabetes patients diagnosed from 1980 to 2012 in Lazio region were included. For HLA, CTLA4 and PTPN22 temporal trend evaluation, subjects were subdivided into groups of years according to age at diagnosis. All subjects were typed for HLA-DRB1 and DQB1 by a reverse line blot. The CT60 polymorphism of the CTLA4 and C1858T of the PTPN22 gene were genotyped using ABI PRISM 7900HT (n = 419 and n = 364 respectively). HLA genotypes were divided in high, moderate and low risk categories. The proportion of the HLA risk categories was not statistically different over the three decades in subjects with age of onset <15 years and ≥ 15 years. The genotype distribution of CT60 polymorphism of CTLA4 gene did not show any change in the frequencies during time. The analysis of the PTPN22 C1858T variant revealed, instead, that the frequency of CT+TT susceptibility genotypes decreased during time (23.9% vs 13.6%, p = 0.017). We can hypothesize that the pressure of the diabetogenic environment could be milder and therefore not sufficient to reduce the need of a strong genetic background (HLA) "to precipitate" diabetes; the increased pressure of the environment could have, instead, some effects on minor susceptibility genes in our population.

PMID:
23613833
PMCID:
PMC3629148
DOI:
10.1371/journal.pone.0061331
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center