Format

Send to

Choose Destination
Biol Trace Elem Res. 2013 Jun;153(1-3):355-62. doi: 10.1007/s12011-013-9670-3. Epub 2013 Apr 24.

Comparative study of metals accumulation in cultured in vitro mycelium and naturally grown fruiting bodies of Boletus badius and Cantharellus cibarius.

Author information

1
Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Cracow, Poland.

Abstract

Cantharellus cibarius Fr. (chanterelle) and Boletus badius Pers. (bay bolete) harvested from natural sites in Poland were used to derive in vitro cultures. The optimal medium composition for cultures was developed. Concentrations of the chosen elements (Zn, Cu, Fe, Mg, Ni, and Cd) in mycelium samples were measured by means of atomic absorption spectrometry. Fe concentration in the analyzed mushroom materials was in the range 215.4-680.3 μg/g dry weight. Mean values of Mg were respectively (in micrograms per gram dry weight) 541.8 for mycelium of C. cibarius cultured in vitro and 1,004.1 for C. cibarius fruiting bodies and 928.9 for the mycelium of B. badius cultured in vitro and 906.4 for B. badius fruiting bodies. The mean concentrations of Zn were 442.7 μg/g dry weight in mycelium from in vitro cultures of B. badius and 172.1 in B. badius fruiting bodies and 131.9 in the case of C. cibarius in mycelium from in vitro cultures and 95.5 for the C. cibarius fruiting bodies. Cu exhibited a reversal tendency, i.e., the element concentrations in naturally grown mushrooms were significantly higher (43.57 μg/g dry weight for C. cibarius and 43.54 μg/g for B. badius) than in cultured in vitro mycelium (12.47 μg/g for C. cibarius and 4.17 μg/g for B. badius). Ni was found in lowest concentrations ranging from 0.33 to 1.88 μg/g dry weight. Toxic metal Cd was found in relatively high concentrations in naturally grown species (0.79 μg/g dry weight-1.02). The lowest was the concentration of Cd in C. cibarius mycelium from in vitro culture-0.06 μg/g dry weight-a bit higher than it was in the B. badius mycelium (0.21 μg/g).

PMID:
23613150
PMCID:
PMC3667370
DOI:
10.1007/s12011-013-9670-3
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center