Format

Send to

Choose Destination
Interact J Med Res. 2013 Jan 31;2(1):e4. doi: 10.2196/ijmr.2402.

Evaluation of user interface and workflow design of a bedside nursing clinical decision support system.

Author information

1
Ringful Health, Austin, TX, United States.

Abstract

BACKGROUND:

Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations.

OBJECTIVE:

Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS.

METHODS:

Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration (NASA) Task Load Index to self-evaluate the amount of cognitive and physical burden associated with using the device.

RESULTS:

A total of 83 heuristic violations were identified in the studies. The distribution of the heuristic violations and their average severity are reported. The nurse evaluators successfully completed all 30 sessions of the performance evaluations. All nurses were able to use the device after a single training session. On average, the nurses took 111 seconds (SD 30 seconds) to complete the simulated task. The NASA Task Load Index results indicated that the work overhead on the nurses was low. In fact, most of the burden measures were consistent with zero. The only potentially significant burden was temporal demand, which was consistent with the primary use case of the tool.

CONCLUSIONS:

The evaluation has shown that our design was functional and met the requirements demanded by the nurses' tight schedules and heavy workloads. The user interface embedded in the tool provided compelling utility to the nurse with minimal distraction.

KEYWORDS:

clinical decision support systems; heuristic evaluations; human computer interaction; patient-centered care; software design; software performance; usability testing; user-computer interface

Supplemental Content

Full text links

Icon for JMIR Publications Icon for PubMed Central
Loading ...
Support Center