Send to

Choose Destination
See comment in PubMed Commons below
Biosens Bioelectron. 2013 Sep 15;47:429-35. doi: 10.1016/j.bios.2013.03.036. Epub 2013 Mar 26.

Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film.

Author information

Department of Chemistry, Yangzhou University, Yangzhou 225002, Jiangsu Province, PR China.


Poly(o-aminophenol-co-pyrogallol) (PAP) was first synthesized via the electrochemical copolymerization of o-aminophenol and pyrogallol in the acidic solution, using a reduced graphene oxide/glassy carbon (RGO/GC) electrode as a working electrode. Reduced graphene oxide played an important role in increasing PAP amount deposited on the RGO/GC electrode compared to that on the bare GC electrode, which is due to that RGO has the large specific surface area. The results from the spectra of IR, (1)H NMR and ESR and the measurement of molecular weight demonstrated that PAP is an oligomer with the free radicals and exhibited good redox activity in a wide pH range from pH<1-9.0 and can effectively catalyze xanthine oxidation due to the presence of the free radicals and the reversible redox groups in the copolymer chain. On the basis of the direct oxidation of xanthine on PAP, the PAP/RGO/GC electrode was used as a xanthine biosensor. The biosensor showed a linear range from 1.0 to 120μM xanthine at pH 6.0 with a correction coefficient of 0.9965 and fast response to xanthine oxidation. The peak potential of xanthine oxidation shifted from 0.814 to 0.668V as pH increased from 5.0 to 7.5.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center