Format

Send to

Choose Destination
See comment in PubMed Commons below
J Sleep Res. 2013 Jun;22(3):239-50. doi: 10.1111/jsr.12009.

Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats..

Author information

1
Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biochemistry and Physiology, University of Surrey, Guildford, Surrey, UK.

Abstract

Prolonged wakefulness or a lack of sleep lead to cognitive deficits, but little is known about the underlying cellular mechanisms. We recently found that sleep deprivation affects spontaneous neuronal activity in the neocortex of sleeping and awake rats. While it is well known that synaptic responses are modulated by ongoing cortical activity, it remains unclear whether prolonged waking affects responsiveness of cortical neurons to incoming stimuli. By applying local electrical microstimulation to the frontal area of the neocortex, we found that after a 4 h period of waking the initial neuronal response in the contralateral frontal cortex was stronger and more synchronous, and was followed by a more profound inhibition of neuronal spiking as compared with the control condition. These changes in evoked activity suggest increased neuronal excitability and indicate that, after staying awake, cortical neurons become transiently bistable. We propose that some of the detrimental effects of sleep deprivation may be a result of altered neuronal responsiveness to incoming intrinsic and extrinsic inputs.

PMID:
23607417
PMCID:
PMC3723708
DOI:
10.1111/jsr.12009
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center