Send to

Choose Destination
See comment in PubMed Commons below
Biomed Res Int. 2013;2013:561410. doi: 10.1155/2013/561410. Epub 2013 Mar 27.

In vitro construction of scaffold-free bilayered tissue-engineered skin containing capillary networks.

Author information

  • 1Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.


Many types of skin substitutes have been constructed using exogenous materials. Angiogenesis is an important factor for tissue-engineered skin constructs. In this study, we constructed a scaffold-free bilayered tissue-engineered skin containing a capillary network. First, we cocultured dermal fibroblasts with dermal microvascular endothelial cells at a ratio of 2 : 1. A fibrous sheet was formed by the interactions between the fibroblasts and the endothelial cells, and capillary-like structures were observed after 20 days of coculture. Epithelial cells were then seeded on the fibrous sheet to assemble the bilayered tissue. HE staining showed that tissue-engineered skin exhibited a stratified epidermis after 7 days. Immunostaining showed that the epithelium promoted the formation of capillary-like structures. Transmission electron microscopy (TEM) analysis showed that the capillary-like structures were typical microblood vessels. ELISA demonstrated that vascularization was promoted by significant upregulation of vascularization associated growth factors due to interactions among the 3 types of cells in the bilayer, as compared to cocultures of fibroblast and endothelial cells and monocultures.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk