Send to

Choose Destination
J Immunol. 2013 May 15;190(10):5196-206. doi: 10.4049/jimmunol.1201607. Epub 2013 Apr 19.

Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator.

Author information

Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06509, USA.


We have previously reported that TLR4 signaling is increased in LPS-stimulated cystic fibrosis (CF) macrophages (MΦs), contributing to the robust production of proinflammatory cytokines. The heme oxygenase-1 (HO-1)/CO pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. In this study, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules enhances CAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations re-established HO-1 and CAV-1 cell surface localization in CF MΦs. Consistent with restoration of HO-1/CAV-1-negative regulation of TLR4 signaling, genetic or pharmacological (CO-releasing molecule 2) induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counterregulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center