Format

Send to

Choose Destination
Mamm Genome. 2013 Jun;24(5-6):228-39. doi: 10.1007/s00335-013-9452-4. Epub 2013 Apr 20.

Gene-trap mutagenesis using Mol/MSM-1 embryonic stem cells from MSM/Ms mice.

Author information

1
Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Honjo 2-2-1, Kumamoto, Japan. 127y2008@st.kumamoto-u.ac.jp

Abstract

The MSM/Ms strain is derived from the Japanese wild mouse Mus musculus molossinus and displays characteristics not observed in common laboratory strains. Functional genomic analyses using genetically engineered MSM/Ms mice will reveal novel phenotypes and gene functions/interactions. We previously reported the establishment of a germline-competent embryonic stem (ES) cell line, Mol/MSM-1, from the MSM/Ms strain. To analyze its usefulness for insertional mutagenesis, we performed gene-trapping using these cells. In the present study, we compared the gene-trap events between Mol/MSM-1 and a conventional ES cell line, KTPU8, derived from the F1 progeny of a C57BL/6 × CBA cross. We introduced a promoter-trap vector carrying the promoterless β-galactosidase/neomycin-resistance fusion gene into Mol/MSM-1 and KTPU8 cells, isolated clones, and identified the trapped genes by rapid amplification of cDNA 5'-ends (5'-RACE), inverse PCR, or plasmid rescue. Unexpectedly, the success rate of 5'-RACE in Mol/MSM trap clones was 47 %, lower than the 87 % observed in KTPU8 clones. Genomic analysis of the 5'-RACE-failed clones revealed that most had trapped ribosomal RNA gene regions. The percentage of ribosomal RNA region trap clones was 41 % in Mol/MSM-1 cells, but less than 10 % in KTPU8 cells. However, within the Mol/MSM-1 5'-RACE-successful clones, the trapping frequency of annotated genes, the chromosomal distribution of vector insertions, the frequency of integration into an intron around the start codon-containing exon, and the functional spectrum of trapped genes were comparable to those in KTPU8 cells. By selecting 5'-RACE-successful clones, it is possible to perform gene-trapping efficiently using Mol/MSM-1 ES cells and promoter-trap vectors.

PMID:
23604909
DOI:
10.1007/s00335-013-9452-4
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center