Format

Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2013 May 21;85(10):4902-11. doi: 10.1021/ac303068t. Epub 2013 May 3.

Impedance-based cell culture platform to assess light-induced stress changes with antagonist drugs using retinal cells.

Author information

1
Department of Bionanotechnology, Gachon University, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, Republic of Korea.

Abstract

This Article describes an unprecedented, simple, and real-time in vitro analytical tool to measure the luminous effect on the time responses function of retinal ganglion cells (RGC-5) by electric cell substrate impedance sensing (ECIS) system. The ECIS system was used for the continuous measurement of different color light-induced effects on the response of cells that exposed to protective drugs. The measurement suggests that the association of photo-oxidative stress was mediated by reactive oxygen species (ROS), which plays a critical role that leads to cell stress, damages, and retinopathy, resulting in eye degenerative diseases. Continuous light radiation caused time-dependent decline of RGC-5 response and resulted in photodamage within 10 h due to adenosine 5'-triphosphate depletion and increased ROS level, which is similar to in vivo photodamage. The ECIS results were correlated with standard cell viability assay. ECIS is very helpful to determine the protective effects of analyzed drugs such as β-carotene, quercetin, agmatine, and glutathione in RGC-5 cells, and the maximum drug activity of nontoxic safer drug concentrations was found to be 0.25, 0.25, 0.25, and 1.0 mM, respectively. All drugs show protection against light radiation toxicity in a dose-dependent manner; the most effective drug was found to be glutathione. The proposed system identifies the phototoxic effects in RGC-5 and provides high throughput drug screening for photo-oxidative stress during early stages of drug discovery. This study is convenient and potential enough for the direct measurements of the photoprotective effect in vitro and would be of broad interest in the field of therapeutics.

PMID:
23596983
DOI:
10.1021/ac303068t
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center