Send to

Choose Destination
PLoS One. 2013 Apr 15;8(4):e54436. doi: 10.1371/journal.pone.0054436. Print 2013.

Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure.

Author information

Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America.


Calpain is an intracellular Ca²⁺-activated protease that is involved in numerous Ca²⁺ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca²⁺-dependent increase of the late sodium current (INaL) in failing heart. Chronic heart failure (HF) was induced in 2 dogs by multiple coronary artery embolization. Using a conventional patch-clamp technique, the whole-cell INaL was recorded in enzymatically isolated ventricular cardiomyocytes (VCMs) in which INaL was activated by the presence of a higher (1 μM) intracellular [Ca²⁺] in the patch pipette. Cell suspensions were exposed to a cell- permeant calpain inhibitor MDL-28170 for 1-2 h before INaL recordings. The numerical excitation-contraction coupling (ECC) model was used to evaluate electrophysiological effects of calpain inhibition in silico. MDL caused acceleration of INaL decay evaluated by the two-exponential fit (τ₁ = 42±3.0 ms τ₂ = 435±27 ms, n = 6, in MDL vs. τ₁ = 52±2.1 ms τ₂ = 605±26 control no vehicle, n = 11, and vs. τ₁ = 52±2.8 ms τ₂ = 583±37 ms n = 7, control with vehicle, P<0.05 ANOVA). MDL significantly reduced INaL density recorded at -30 mV (0.488±0.03, n = 12, in control no vehicle, 0.4502±0.0210, n = 9 in vehicle vs. 0.166±0.05pA/pF, n = 5, in MDL). Our measurements of current-voltage relationships demonstrated that the INaL density was decreased by MDL in a wide range of potentials, including that for the action potential plateau. At the same time the membrane potential dependency of the steady-state activation and inactivation remained unchanged in the MDL-treated VCMs. Our ECC model predicted that calpain inhibition greatly improves myocyte function by reducing the action potential duration and intracellular diastolic Ca²⁺ accumulation in the pulse train.


Calpain inhibition reverses INaL changes in failing dog ventricular cardiomyocytes in the presence of high intracellular Ca²⁺. Specifically it decreases INaL density and accelerates INaL kinetics resulting in improvement of myocyte electrical response and Ca²⁺ handling as predicted by our in silico simulations.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center