Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Toxicol. 2014 Dec;29(12):1355-66. doi: 10.1002/tox.21866. Epub 2013 Apr 18.

Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity.

Author information

1
Medical College, Soochow University, Suzhou, 215123, People's Republic of China.

Abstract

Phoxim (O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate) is a powerful organophosphorus pesticide with high potential for Bombyx mori larvae of silkworm exposure. However, it is possible that during the phoxim metabolism, there is generation of reactive oxygen species (ROS) and phoxim may produce oxidative stress and neurotoxicity in an intoxicated silkworm. Titanium dioxide nanoparticles (TiO2 NPs) pretreatment has been demonstrated to increase antioxidant capacity and acetylcholinesterase (AChE) activity in organisms. This study was, therefore, undertaken to determine phoxim-induced oxidative stress and neurotoxicity to determine whether phoxim intoxication alters the antioxidant system and AChE activity in the B. mori larval midgut, and to determine whether TiO2 NPs pretreatment attenuates phoxim-induced toxicity. The findings suggested that phoxim exposure decreased survival of B. mori larvae, increased malondialdehyde (MDA), carbonyl and 8-OHdG levels, and ROS accumulation in the midgut. Furthermore, phoxim significantly decreased the activities of AChE, superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione-S-transferase (GST), and levels of ascorbic acid (AsA), reduced glutathione (GSH), and thiol in the midgut. TiO2 pretreatment, however, could increase AChE activity, and remove ROS via activating SOD, CAT, APX, GR, and GST, and accelerating AsA-GSH cycle, thus attenuated lipid, protein, and DNA peroxidation and improve B. mori larval survival under phoxim-induced toxicity. Moreover, this experimental system would help nanomaterials to be applied in the sericulture.

KEYWORDS:

Bombyx mori; antioxidative capacity; midgut; phoxim insecticide; survival; titanium dioxide nanoparticles

PMID:
23595993
DOI:
10.1002/tox.21866
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center