Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA Biol. 2013 Jun;10(6):909-14. doi: 10.4161/rna.24513. Epub 2013 Apr 1.

RNase P enzymes: divergent scaffolds for a conserved biological reaction.

Author information

1
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.

Abstract

Ribonuclease P (RNase P) catalyzes the maturation of the 5' end of precursor-tRNAs (pre-tRNA) and is conserved in all domains of life. However, the composition of RNase P varies from bacteria to archaea and eukarya, making RNase P one of the most diverse enzymes characterized. Most known RNase P enzymes contain a large catalytic RNA subunit that associates with one to 10 proteins. Recently, a protein-only form of RNase P was discovered in mitochondria and chloroplasts of many higher eukaryotes. This proteinaceous RNase P (PRORP) represents a new class of metallonucleases. Here we discuss our recent crystal structure of PRORP1 from Arabidopsis thaliana and speculate on the reasons for the replacement of catalytic RNA by a protein catalyst. We conclude, based on an analysis of the catalytic efficiencies of ribonucleoprotein (RNP) and PRORP enzymes, that the need for greater catalytic efficiency is most likely not the driving force behind the replacement of the RNA with a protein catalyst. The emergence of a protein-based RNase P more likely reflects the increasing complexity of the biological system, including difficulties in importation into organelles and vulnerability of organellar RNAs to cleavage.

KEYWORDS:

MRPP; PRORP; RNA world; RNase P; mitochondrial tRNA; ribozyme; tRNA processing

PMID:
23595059
PMCID:
PMC3904588
DOI:
10.4161/rna.24513
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center