Send to

Choose Destination
PLoS One. 2013 Apr 8;8(4):e60672. doi: 10.1371/journal.pone.0060672. Print 2013.

Carbon monoxide abrogates ischemic insult to neuronal cells via the soluble guanylate cyclase-cGMP pathway.

Author information

Department of Anesthesiology, Division for Experimental Anesthesiology, University Medical Center Freiburg, Germany.



Carbon monoxide (CO) is an accepted cytoprotective molecule. The extent and mechanisms of protection in neuronal systems have not been well studied. We hypothesized that delivery of CO via a novel releasing molecule (CORM) would impart neuroprotection in vivo against ischemia-reperfusion injury (IRI)-induced apoptosis of retinal ganglion cells (RGC) and in vitro of neuronal SH-SY5Y-cells via activation of soluble guanylate-cyclase (sGC).


To mimic ischemic respiratory arrest, SH-SY5Y-cells were incubated with rotenone (100 nmol/L, 4 h) ± CORM ALF186 (10-100 µmol/L) or inactivated ALF186 lacking the potential of releasing CO. Apoptosis and reactive oxygen species (ROS) production were analyzed using flow-cytometry (Annexin V, mitochondrial membrane potential, CM-H2DCFDA) and Western blot (Caspase-3). The impact of ALF186± respiratory arrest on cell signaling was assessed by measuring expression of nitric oxide synthase (NOS) and soluble guanylate-cyclase (sGC) and by analyzing cellular cGMP levels. The effect of ALF186 (10 mg/kg iv) on retinal IRI in Sprague-Dawley rats was assessed by measuring densities of fluorogold-labeled RGC after IRI and by analysis of apoptosis-related genes in retinal tissue.


ALF186 but not inactivated ALF186 inhibited rotenone-induced apoptosis (Annexin V positive cells: 25 ± 2% rotenone vs. 14 ± 1% ALF186+rotenone, p<0.001; relative mitochondrial membrane potential: 17 ± 4% rotenone vs. 55 ± 3% ALF186+rotenone, p<0.05). ALF186 increased cellular cGMP levels (33±5 nmol/L vs. 23±3 nmol/L; p<0.05) and sGC expression. sGC-inhibition attenuated ALF186-mediated protection (relative mitochondrial membrane potential: 55±3% ALF186+rotenone vs. 20 ± 1% ODQ + ALF186+rotenone, p<0.05). ALF186 protected RGC in vivo (IRI 1255 ± 327 RGC/mm(2) vs. ALF186 + IRI 2036 ± 83; p<0.05) while sGC inhibition abolished the protective effects of ALF186 (ALF186 + IRI 2036 ± 83 RGC/mm(2) vs. NS-2028 + ALF186 + IRI 1263 ± 170, p<0.05).


The CORM ALF186 inhibits IRI-induced neuronal cell death via activation of sGC and may be a useful treatment option for acute ischemic insults to the retina and the brain.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center