Format

Send to

Choose Destination
See comment in PubMed Commons below
J Digit Imaging. 2013 Oct;26(5):850-65. doi: 10.1007/s10278-013-9591-x.

A novel similarity learning method via relative comparison for content-based medical image retrieval.

Author information

1
School of Information Engineering, Nanchang University, Nanchang, China, n060101@e.ntu.edu.sg.

Abstract

Nowadays, the huge volume of medical images represents an enormous challenge towards health-care organizations, as it is often hard for clinicians and researchers to manage, access, and share the image database easily. Content-based medical image retrieval (CBMIR) techniques are employed to facilitate the above process. It is known that a few concrete factors, including visual attributes extracted from images, measures encoding the similarity between images, user interaction, etc. play important roles in determining the retrieval performance. This paper concentrates on the similarity learning problem of CBMIR. A novel similarity learning paradigm is proposed via relative comparison, and a large database composed of 5,000 images is utilized to evaluate the retrieval performance. Extensive experimental results and comprehensive statistical analysis demonstrate the superiority of adopting the newly introduced learning paradigm, compared with several conventional supervised and semi-supervised similarity learning methods, in the presented CBMIR application.

PMID:
23563792
PMCID:
PMC3782604
DOI:
10.1007/s10278-013-9591-x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center