Format

Send to

Choose Destination
Rev Sci Instrum. 2013 Mar;84(3):034903. doi: 10.1063/1.4797621.

Temperature measurements of heated microcantilevers using scanning thermoreflectance microscopy.

Author information

1
Department of Mechanical Engineering, Sogang University, Seoul 121-742, South Korea.

Abstract

We report the development of scanning thermoreflectance thermometry and its application for steady and dynamic temperature measurement of a heated microcantilever. The local thermoreflectance signal of the heated microcantilever was calibrated to temperature while the cantilever was under steady and periodic heating operation. The temperature resolution of our approach is 0.6 K, and the spatial resolution is 2 μm, which are comparable to micro-Raman thermometry. However, the temporal resolution of our approach is about 10 μsec, which is significantly faster than micro-Raman thermometry. When the heated microcantilever is periodically heated with frequency up to 100 kHz, we can measure both the in-phase and out-of-phase components of the temperature oscillation. For increasing heating frequency, the measured cantilever AC temperature distribution tends to be confined in the vicinity of the heater region and becomes increasingly out of phase with the driving signal. These results compare well with finite element simulations.

PMID:
23556839
DOI:
10.1063/1.4797621

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center