Send to

Choose Destination
J Dent Biomech. 2013;4:1758736013483747. doi: 10.1177/1758736013483747. Epub 2013 Mar 25.

Relationships between tissue properties and operational parameters of a dental handpiece during simulated cavity preparation.

Author information

The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China ; Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.


A preliminary study was conducted on the development of an intelligent dental handpiece with functionality to detect subtle changes in mechanical properties of tooth tissue during milling. Such equipment would be able to adopt changes in cutting parameters and make real-time measurements to avoid tooth tissue damage caused by overexertion and overextension of the cutting tool. A modified dental handpiece, instrumented with strain gauges, microphone, displacement sensor, and air pressure sensor, was mounted to a linear movement table and used to mill three to four cavities in >50 bovine teeth. Extracted sound frequency and density were analyzed along with force, air pressure, and displacement for correlations and trends. Experimental results showed a high correlation (coefficient close to 0.7) between the feed force, the rotational frequency, and the averaged gray scale. These results could form the basis of a feedback control system to improve the safety of dental cutting procedures. This article is written in memory of Dr Hongyan Sun, who passed away in 2011 at a young age of 37.


Dental handpiece; cavity preparation; correlation coefficient; feed force; rotational frequency

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center