Send to

Choose Destination
Water Res. 2013 Aug 1;47(12):3966-75. doi: 10.1016/j.watres.2012.10.055. Epub 2013 Mar 19.

Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing.

Author information

Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Rd, Houston, TX 77204-5003, USA.


This study demonstrated that coated nitrocellulose membranes with a nanocomposite containing 97% (wt%) of polyvinyl-N-carbazole (PVK) and 3% (wt%) of single-walled carbon nanotubes (SWNTs) (97:3 wt% ratio PVK:SWNT) achieve similar or improved removal of bacteria when compared with 100% SWNTs coated membranes. Membranes coated with the nanocomposite exhibited significant antimicrobial activity toward Gram-positive and Gram-negative bacteria (≈ 80-90%); and presented a virus removal efficiency of ≈ 2.5 logs. Bacterial cell membrane damage was considered a possible mechanism of cellular inactivation since higher efflux of intracellular material (Deoxyribonucleic acid, DNA) was quantified in the filtrate of PVK-SWNT and SWNT membranes than in the filtrate of control membranes. To evaluate possible application of these membrane filters for drinking water treatment, toxicity of PVK-SWNT was tested against fibroblast cells. The results demonstrated that PVK-SWNT was non toxic to fibroblast cells as opposed to pure SWNT (100%). These results suggest that it is possible to synthesize antimicrobial nitrocellulose membranes coated with SWNT based nanocomposites for drinking water treatment. Furthermore, membrane filters coated with the nanocomposite PVK-SWNT (97:3 wt% ratio PVK:SWNT) will produce more suitable coated membranes for drinking water than pure SWNTs coated membranes (100%), since the reduced load of SWNT in the nanocomposite will reduce the use of costly and toxic SWNT nanomaterial on the membranes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center