Format

Send to

Choose Destination
Mech Dev. 2013 Sep-Oct;130(9-10):506-18. doi: 10.1016/j.mod.2013.03.001. Epub 2013 Mar 28.

Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development.

Author information

1
Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA.

Abstract

Glial cell line-derived neurotrophic factor (GDNF) binds a coreceptor GDNF family receptor α1 (GFRα1) and forms a signaling complex with the receptor tyrosine kinase RET. GDNF-GFRα1-RET signaling activates cellular pathways that are required for normal induction of the ureteric bud (UB) from the Wolffian duct (WD). Failure of UB formation results in bilateral renal agenesis and perinatal lethality. Gfrα1 is expressed in both the epithelial and mesenchymal compartments of the developing kidney while Ret expression is specific to the epithelium. The biological importance of Gfrα1's wider tissue expression and its role in later kidney development are unclear. We discovered that conditional loss of Gfrα1 in the WD epithelium prior to UB branching is sufficient to cause renal agenesis. This finding indicates that Gfrα1 expressed in the nonepithelial structures cannot compensate for this loss. To determine Gfrα1's role in branching morphogenesis after UB induction we used an inducible Gfrα1-specific Cre-deletor strain and deleted Gfrα1 from the majority of UB tip cells post UB induction in vivo and in explant kidney cultures. We report that Gfrα1 excision from the epithelia compartment after UB induction caused a modest reduction in branching morphogenesis. The loss of Gfrα1 from UB-tip cells resulted in reduced cell proliferation and decreased activated ERK (pERK). Further, cells without Gfrα1 expression are able to populate the branching UB tips. These findings delineate previously unclear biological roles of Gfrα1 in the urinary tract and demonstrate its cell-type and stage-specific requirements in kidney development.

KEYWORDS:

Branching morphogenesis; Gfrα1; Kidney development; Ret

PMID:
23542432
PMCID:
PMC3722262
DOI:
10.1016/j.mod.2013.03.001
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Supplementary concept, Grant support

Publication type

MeSH terms

Substances

Supplementary concept

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center