Format

Send to

Choose Destination
See comment in PubMed Commons below
J Plant Physiol. 2013 Jul 1;170(10):923-33. doi: 10.1016/j.jplph.2013.01.017. Epub 2013 Mar 29.

Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways.

Author information

1
College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.

Abstract

Ethylene response factor (ERF) functions as an important plant-specific transcription factor in regulating biotic and abiotic stress response through interaction with various stress pathways. We previously obtained three ERF members, VpERF1, VpERF2, and VpERF3 from a highly powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata cDNA full-length library. To explore their functions associated with plant disease resistance or biotic stress, we report here to characterize three ERF members from this library. PM-inoculation analysis on three different resistant grapevine genotypes revealed that three VpERFs displayed significant responses, but a different expression pattern. Over-expression of VpERF1, VpERF2, and VpERF3 in transgenic tobacco plants demonstrated that VpERF2 and VpERF3 enhanced resistance to both bacterial pathogen Ralstonia solanacearum and fungal pathogen Phytophtora parasitica var. nicotianae Tucker. Importantly, VpERF1-overexpressing transgenic Arabidopsis plants increased susceptibility toward these pathogens. Investigation on drought, cold, and heat treatments suggested, VpERF2 was distinctly induced, whereas VpERF3 displayed a very weak response and VpERF1 was distinctly induced by drought and heat. Concurrently, VpERF3 was significantly induced by salicylic acid (SA), methyl jasmonate (MeJA), and ET. Our results showed that the three VpERFs from Chinese wild V. pseudoreticulata play different roles in either preventing disease progression via regulating the expression of relevant defense genes, or directly involving abiotic stress responsive pathways.

PMID:
23541511
DOI:
10.1016/j.jplph.2013.01.017
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center