Send to

Choose Destination
Am J Med Genet A. 2013 May;161A(5):1167-72. doi: 10.1002/ajmg.a.35847. Epub 2013 Mar 26.

Familial microdeletion of 17q24.3 upstream of SOX9 is associated with isolated Pierre Robin sequence due to position effect.

Author information

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA.


Pierre Robin sequence (PRS) is a malformation pattern characterized by the core triad of retrognathia, glossoptosis, and cleft palate that causes difficulty in glossopharyngeal-laryngeal-vagal functions. The etiology of PRS remains largely unknown; previous reports have suggested that it is caused by intrauterine constriction or external conditions such as oligohydramnios, breech position, or abnormal uterine anatomy. Genetic causes include occurrence as a manifestation of many single gene conditions and chromosomal rearrangements. Positional effect on some loci or genes, including SOX9 has also been posited as a cause. Here, we report on an 18-month-old girl born with isolated PRS. Clinical chromosome microarray analysis (CMA) revealed a maternally inherited ~623 kb microdeletion that is -725 kb upstream of 5' SOX9 at chromosome locus 17q24.3. Her mother had cleft palate. This region, although devoid of any genes, is known to have a position effect on SOX9 due to elimination of highly conserved non-coding cis-regulatory elements. This report supports the evidence that deregulation of an intact SOX9 coding region is a cause of or associated with isolated PRS, and provides further evidence that CMA in the clinical setting is a powerful tool in detecting microdeletions in gene "desert" regions that have pathogenic position effect on specific genes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center