Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Med Inform Assoc. 2013 Jun;20(e1):e147-54. doi: 10.1136/amiajnl-2012-000896. Epub 2013 Mar 26.

Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network.

Author information

1
Group Health Research Institute, Seattle, Washington 98101, USA. newton.k@ghc.org

Abstract

BACKGROUND:

Genetic studies require precise phenotype definitions, but electronic medical record (EMR) phenotype data are recorded inconsistently and in a variety of formats.

OBJECTIVE:

To present lessons learned about validation of EMR-based phenotypes from the Electronic Medical Records and Genomics (eMERGE) studies.

MATERIALS AND METHODS:

The eMERGE network created and validated 13 EMR-derived phenotype algorithms. Network sites are Group Health, Marshfield Clinic, Mayo Clinic, Northwestern University, and Vanderbilt University.

RESULTS:

By validating EMR-derived phenotypes we learned that: (1) multisite validation improves phenotype algorithm accuracy; (2) targets for validation should be carefully considered and defined; (3) specifying time frames for review of variables eases validation time and improves accuracy; (4) using repeated measures requires defining the relevant time period and specifying the most meaningful value to be studied; (5) patient movement in and out of the health plan (transience) can result in incomplete or fragmented data; (6) the review scope should be defined carefully; (7) particular care is required in combining EMR and research data; (8) medication data can be assessed using claims, medications dispensed, or medications prescribed; (9) algorithm development and validation work best as an iterative process; and (10) validation by content experts or structured chart review can provide accurate results.

CONCLUSIONS:

Despite the diverse structure of the five EMRs of the eMERGE sites, we developed, validated, and successfully deployed 13 electronic phenotype algorithms. Validation is a worthwhile process that not only measures phenotype performance but also strengthens phenotype algorithm definitions and enhances their inter-institutional sharing.

KEYWORDS:

electronic health record; electronic medical record; genomics; phenotype; validation studies

PMID:
23531748
PMCID:
PMC3715338
DOI:
10.1136/amiajnl-2012-000896
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center