Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2013 Oct 3;117(39):9424-34. doi: 10.1021/jp311493w. Epub 2013 Apr 12.

Theoretical studies of the ground and excited state structures of stilbene.

Author information

1
Indian Institute of Astrophysics , Bangalore 560034, India.

Abstract

Optimized geometries are evaluated for the ground and low lying excited states of cis-stilbene, trans-stilbene, and 4a,4b-dihydrophenanthrene (DHP) from calculations performed with the improved virtual orbital, complete active space configuration interaction (IVO-CASCI) method. The calculations indicate that a nonplanar conformer of trans-stilbene is the most stable among the isomers. The calculated ground and low lying excited state geometries agree well with experiment and with prior theoretical estimates where available. Our IVO-CASCI based multireference Möller-Plesset (MRMP) computations place the (1)B(u) state of trans stilbene to be ∼4.0 eV above the ground X(1)A(g) state, which is in accord with experiment and with earlier theoretical estimates. The 1(1)B(u) state of trans-stilbene can be represented by the highest occupied molecular orbital (HOMO) → lowest unoccupied molecular orbital (LUMO) transition (ionic type) from the ground state, whereas its 2(1)B(u) state is dominated by the HOMO → LUMO+1 and HOMO-1 → LUMO transitions (covalent type). Likewise, the 1(1)B and 2(1)B states of cis-stilbene and DHP are also found to be of ionic and covalent types, respectively.

PMID:
23530611
DOI:
10.1021/jp311493w
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center