Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2013 May;41(9):4963-75. doi: 10.1093/nar/gkt175. Epub 2013 Mar 25.

Distinctive contributions of the ribosomal P-site elements m2G966, m5C967 and the C-terminal tail of the S9 protein in the fidelity of initiation of translation in Escherichia coli.

Author information

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.


The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(fMet(CAU) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(fMet(GUG); UAG with tRNA(fMet(CAU) ; UAC with tRNA(fMet(GUG) ; and AUC with tRNA(fMet(GUG) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(fMet(CAU) lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center