Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2013 May 21;13(10):1911-8. doi: 10.1039/c3lc41394b. Epub 2013 Mar 25.

Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control.

Author information

Departments of Bioengineering and Applied Physics, Stanford University and Howard Hughes Medical Institute, Stanford, California 94305, USA.


Multilayer microfluidics based on PDMS (polydimethylsiloxane) soft lithography have offered parallelism and integration for biological and chemical sciences, where reduction in reaction volume and consistency of controlled variables across experiments translate into reduced cost, increased quantity and quality of data. One issue with push up or push down microfluidic control concept is the inability to provide multiple control pressures without adding more complex and expensive external pressure controls. We present here a microfluidic serial DAC (Digital to Analog Converter) that can be integrated with any PDMS device to expand the device's functionality by effectively adding an on-chip pressure regulator. The microfluidic serial DAC can be used with any incompressible fluids and operates in a similar fashion compared to an electronic serial DAC. It can be easily incorporated into any existing multilayer microfluidic devices, and the output pressure that the device generates could be held for extensive times. We explore in this paper various factors that affect resolution, speed, and linearity of the DAC output. As an application, we demonstrate microfluidic DAC's ability for on-chip manipulation of flow resistance when integrated with a simple flow network. In addition, we illustrate an added advantage of using the microfluidic serial DAC in preventing back flow and possible contamination.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center