Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Cell Biol. 2013 Apr;91(2):109-15. doi: 10.1139/bcb-2012-0021. Epub 2012 Oct 11.

Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress.

Author information

1
Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032 Shannxi Province, China.

Abstract

Mechanical stress is essential for bone development. Mechanical stimuli are transduced to biochemical signals that regulate proliferation, differentiation, and cytoskeletal reorganization in osteoblasts. In this study, we used proteomics to evaluate differences in the protein expression profiles of untreated Saos-2 osteoblast cells and Saos-2 cells subjected to mechanical stress loading. Using 2-D electrophoresis, MALDI-TOF mass spectroscopy, and bioinformatics, we identified a total of 26 proteins differentially expressed in stress loaded cells compared with control cells. Stress loaded Saos-2 cells exhibited significant upregulation of 17 proteins and significant downregulation of 9 proteins compared with control cells. Proteins that were most significantly upregulated in mechanically loaded cells included those regulating osteogenesis, energy metabolism, and the stress response, such as eukaryotic initiation factor 2 (12-fold), mitochondrial ATP synthase (8-fold), and peptidylprolyl isomerase A (cyclophilin A)-like 3 (6.5-fold). Among the proteins that were significantly downregulated were those involved in specific signaling pathways and cell proliferation, such as protein phosphatase regulatory (inhibitor) subunit 12B (13.8-fold), l-lactate dehydrogenase B (9.4-fold), Chain B proteasome activator Reg (Alpha) PA28 (7.7-fold), and ubiquitin carboxyl-terminal esterase L1 (6.9-fold). Our results provide a platform to understand the molecular mechanisms underlying mechanotransduction.

PMID:
23527640
DOI:
10.1139/bcb-2012-0021
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center