Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013;8(3):e60264. doi: 10.1371/journal.pone.0060264. Epub 2013 Mar 20.

Activating somatic FGFR2 mutations in breast cancer.

Author information

1
Institute of Human Genetics, University of Cologne, Cologne, Germany.

Abstract

It is known that FGFR2 gene variations confer a risk for breast cancer. FGFR2 and FGF10, the main ligand of FGFR2, are both overexpressed in 5-10% of breast tumors. In our study, we sequenced the most important coding regions of FGFR2 in somatic tumor tissue of 140 sporadic breast cancer patients and performed MLPA analysis to detect copy number variations in FGFR2 and FGF10. We identified one somatic heterozygous missense mutation, p.K660N (c.1980G>C), within the tyrosine kinase domain of FGFR2 in tumor tissue of a sporadic breast cancer patient, which is likely mediated by the FGFR2-IIIb isoform. The presence of wild type and mutated alleles in equal quantities suggests that the mutation has driven clonal amplification of mutant cells. We have analyzed the tyrosine kinase activity of p.K660N and another recently described somatic breast cancer mutation in FGFR2, p.R203C, after expression in HEK293 cells and demonstrated that the intrinsic tyrosine kinase activity of both mutant proteins is strongly increased resulting in elevated phosphorylation and activity of downstream effectors. To our knowledge, this is the first report of functional analysis of somatic breast cancer mutations in FGFR2 providing evidence for the activating nature of FGFR2-mediated signalling in the pathogenesis of breast cancer.

PMID:
23527311
PMCID:
PMC3603931
DOI:
10.1371/journal.pone.0060264
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center