Send to

Choose Destination
See comment in PubMed Commons below
Int J Syst Evol Microbiol. 2013 Sep;63(Pt 9):3257-68. doi: 10.1099/ijs.0.048587-0. Epub 2013 Mar 22.

Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

Author information

Department of Food Science, Cornell University, Ithaca, NY 14853, USA.


Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Ingenta plc
    Loading ...
    Support Center