Send to

Choose Destination
J Hazard Mater. 2013 May 15;252-253:198-203. doi: 10.1016/j.jhazmat.2013.02.051. Epub 2013 Mar 5.

Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.

Author information

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States.


Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H2O2 generation and Fe(2+) release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center