Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods Enzymol. 2013;525:59-83. doi: 10.1016/B978-0-12-397944-5.00004-3.

Sperm patch-clamp.

Author information

1
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA. lishko@berkeley.edu

Abstract

Sperm intracellular pH and calcium concentration ([Ca(2+)]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca(2+)] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center