Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2013 Dec;97(24):10563-74. doi: 10.1007/s00253-013-4792-2. Epub 2013 Mar 22.

Effective anaerobic treatment of fresh leachate from MSW incineration plant and dynamic characteristics of microbial community in granular sludge.

Author information

1
Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.

Abstract

We investigated the treatment of fresh leachate from municipal solid waste incineration plants with high-strength organics using a lab-scale expanded granular sludge bed (EGSB) reactor. The reactor was operated at a mesophilic temperature (33 °C) for 118 days. The influent chemical oxygen demand (COD) of the leachate gradually increased to over 70,000 mg/L, and the organic loading rate increased to 18 kg COD/(m(3) day). An average COD removal efficiency of 86.7 % was achieved when the reactor was fed with raw leachate, which suggests the feasibility of the EGSB process for leachate treatment. The microbial communities in the sludge from the reactor during the trial operation were constructed by denaturing gradient gel electrophoresis, clone libraries, and real-time quantitative polymerase chain reaction. The dominant group for archaea was Methanosaeta, with 68.4 % proportion at the start of the operation, and then changed to Methanosarcina, with a proportion of 62.3 %, after 118 days of operation. The dominant group of eubacteria was confirmed to be Firmicutes throughout the operation process, with the proportion increasing from >50 to 81.2 %. Almost all the operational taxonomic units of Firmicutes belonged to the order Clostridiales, with characteristic spore formation. The microbial diversity of the population was low under raw leachate as feed in the reactor. The dynamics of the microbial community in the anaerobic granular sludge was discussed relating with the operating status of the EGSB reactor.

PMID:
23519733
DOI:
10.1007/s00253-013-4792-2
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms

Substances

Secondary source ID

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center