A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Tradeoff on Phenotype Robustness in Biological Networks Part II: Ecological Networks

Evol Bioinform Online. 2013:9:69-85. doi: 10.4137/EBO.S10685. Epub 2013 Feb 26.

Abstract

In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales.

Keywords: PDE; ecological networks; network robustness; network sensitivity; phenotype robustness; spatial-temporal domain.