Format

Send to

Choose Destination
Cytometry A. 2013 Jun;83(6):540-51. doi: 10.1002/cyto.a.22277. Epub 2013 Mar 15.

Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping.

Author information

1
Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA. mc.cheung@gmail.com

Abstract

We present measurements by deep-ultraviolet mass mapping of nucleic acid (NA) and protein for five commonly cultured and three primary cell types. The dry mass distribution at submicron resolution was determined on a single-cell basis for 250-500 cells from each of these types. Since the method carries a direct reference to a spectrophotometric standard (molar extinction coefficient), we are able to calibrate the absolute weight distributions both on a cell-to-cell basis within each type and across types. We also provide a calibration in absolute mass units for fluorescence-based measurements (flow cytometry and fluorescence microscopy). As might be expected the cultured cell lines show a high concentration of nucleic acids in the nuclear compartment, much larger than the genomic 2C number even in the G1 stage. The whole-cell nucleic-acid/protein ratio was found to be a characteristic of cell lines that persists independent of cell cycle and, as a result, this ratio has some value for phenotyping. Primary chicken red blood cells (cRBC), often used as a cytometry standard, were determined to have a nuclear-isolated nucleic acid content much closer to the genomic number than the cultured cell lines (cRBC: 3.00 pg total NA, 2.30 pg DNA, and 0.70 pg RNA). The individual blastomeres (n = 54) from mouse embryos at eight-cell stage were measured and found to vary by more than a factor or two in total protein and nucleic acid content (0.8-2.3 ng total protein, 70-150 pg total NA). The ratio of nucleic acid to protein was more nearly constant for each blastomere from a particular embryo and this ratio was found to be an identifying characteristic that varies from embryo to embryo obtained from a single flushing of a mouse.

PMID:
23504822
DOI:
10.1002/cyto.a.22277
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center