Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Rep. 2013 Mar 28;3(3):892-904. doi: 10.1016/j.celrep.2013.02.028. Epub 2013 Mar 14.

Eukaryotic replisome components cooperate to process histones during chromosome replication.

Author information

1
Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.

Abstract

DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.

PMID:
23499444
DOI:
10.1016/j.celrep.2013.02.028
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center