Format

Send to

Choose Destination
J Enzyme Inhib Med Chem. 2014 Apr;29(2):281-91. doi: 10.3109/14756366.2013.776556. Epub 2013 Mar 14.

Synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones.

Author information

1
Chemistry Department & Centre of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals , Dhahran , Saudi Arabia.

Abstract

A series of new 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones have been synthesized and evaluated for dual D2 and 5-HT1A receptor binding affinities. The synthesized ligands are structurally related to bifeprunox, a potential atypical antipsychotic, having potent D2 receptor antagonist and 5-HT1A receptor agonist properties. The Suzuki-Miyaura reaction of cyclic vinyl boronate with appropriate aryl halide yielded arylpiperidine, which was eventually transformed to piperidinyl-1H-benzo[d]imidazol-2(3H)-one. The reductive amination of the latter with appropriate biarylaldehdyes rendered the synthesis of 5-piperidinyl-1H-benzo[d]imidazol-2(3H)-ones. Likewise, the Buchwald-Hartwig coupling reactions of 1-boc-piperazine with appropriate aryl halide and subsequent removal of the boc group rendered arylpiperazine. The reductive amination of the latter with appropriate biarylaldehdyes accomplished the synthesis of 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones. The structure-activity relationship studies showed that cyclopentenylpyridine and cyclopentenylbenzyl groups contribute significantly to the dual D2 and 5-HT1A receptor binding affinities of these compounds.

PMID:
23488743
DOI:
10.3109/14756366.2013.776556
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center