Send to

Choose Destination
ACS Comb Sci. 2013 Apr 8;15(4):174-82. doi: 10.1021/co3001378. Epub 2013 Mar 13.

Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates.

Author information

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T 1Z1, Canada.


The convenient use of SELEX and related combinatorial methods of in vitro selection provides a formidable gateway for the generation of DNA enzymes, especially in the context of improving their potential as gene therapeutic agents. Here, we report on the selection of DNAzyme 12-91, a modified nucleic acid catalyst adorned with imidazole, ammonium, and guanidinium groups that provide for efficient M(2+)-independent cleavage of an all-RNA target sequence (kobs = 0.06 min(-1)). While Dz12-91 was selected for intramolecular cleavage of an all-RNA target, it surprisingly cleaves a target containing a lone ribocytosine unit with even greater efficiency (kobs = 0.27 min(-1)) than Dz9-86 (kobs = 0.13 min(-1)). The sequence composition of Dz12-91 bears a marked resemblance to that of Dz9-86 (kobs = 0.0014 min(-1) with an all-RNA substrate) that was selected from the same library to cleave a target containing a single ribonucleotide. However, small alterations in the sequence composition have a profound impact on the substrate preference and catalytic properties. Indeed, Dz12-91 displays the highest known rate enhancement for the M(2+)-independent cleavage of all-RNA targets. Hence, Dz12-91 represents a step toward the generation of potentially therapeutically active DNAzymes and further underscores the usefulness of modified triphosphates in selection experiments.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center