Send to

Choose Destination
See comment in PubMed Commons below
Biomed Res Int. 2013;2013:705418. doi: 10.1155/2013/705418. Epub 2013 Jan 22.

Enhanced production of acarbose and concurrently reduced formation of impurity c by addition of validamine in fermentation of Actinoplanes utahensis ZJB-08196.

Author information

Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.


Commercial production of acarbose is exclusively via done microbial fermentation with strains from the genera of Actinoplanes. The addition of C7N-aminocyclitols for enhanced production of acarbose and concurrently reduced formation of impurity C by cultivation of A. utahensis ZJB-08196 in 500-mL shake flasks was investigated, and validamine was found to be the most effective strategy. Under the optimal conditions of validamine addition, acarbose titer was increased from 3560 ± 128 mg/L to 4950 ± 156 mg/L, and impurity C concentration was concurrently decreased from 289 ± 24 mg/L to 107 ± 29 mg/L in batch fermentation after 168 h of cultivation. A further fed-batch experiment coupled with the addition of validamine (20 mg/L) in the fermentation medium prior to inoculation was designed to enhance the production of acarbose. When twice feedings of a mixture of 6 g/L glucose, 14 g/L maltose, and 9 g/L soybean flour were performed at 72 h and 96 h, acarbose titer reached 6606 ± 103 mg/L and impurity C concentration was only 212 ± 12 mg/L at 168 h of cultivation. Acarbose titer and proportion of acarbose/impurity C increased by 85.6% and 152.9% when compared with control experiments. This work demonstrates for the first time that validamine addition is a simple and effective strategy for increasing acarbose production and reducing impurity C formation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Support Center