Send to

Choose Destination
See comment in PubMed Commons below
Int J Mol Med. 2013 May;31(5):1075-80. doi: 10.3892/ijmm.2013.1297. Epub 2013 Mar 12.

Changes in glutamate homeostasis cause retinal degeneration in Royal College of Surgeons rats.

Author information

Southwest Eye Hospital, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China.


The aim of the present study was to investigate glutamate homeostasis in retinal degeneration-induced changes and the potential mechanisms of glutamate-mediated excitotoxicity in a rat model. The expression of vesicular glutamate transporter-1 (VGLUT-1) and protein kinase Cα (PKCα) in wild-type and Royal College of Surgeons (RCS) rat retinas, at postnatal Day 15 (P15), P30, P60 and P90, were detected using quantitative real-time polymerase chain reaction and immunohistochemistry. The levels of glutamine synthetase (GS) and L-glutamate/L-aspartate transporter (GLAST) were evaluated by western blotting. Compared with wild-type rats, outer nuclear layer thickness was significantly thinner and VGLUT-1 expression was upregulated in a time-dependent pattern in RCS rats. The ratio of VGLUT-1 to PKCα in RCS rats peaked at P60 (p<0.01) and subsequently decreased by P90 (p<0.01), while it remained constant in wild-type rats. The expression of GS increased gradually from P30 to P90 in RCS rats (p<0.01), while it remained constant in wild-type rats at various time-points. No significant difference in GLAST expression was found between RCS and wild-type rats at all stages of retinal degeneration. Our results confirm the occurrence of glutamate-mediated excitotoxicity to RCS rat retinas and provide an experimental foundation for safeguarding the remnant visual function in retinal degenerative disorders.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Spandidos Publications
    Loading ...
    Support Center