Send to

Choose Destination
See comment in PubMed Commons below
Am J Hypertens. 2013 Jul;26(7):918-23. doi: 10.1093/ajh/hpt038. Epub 2013 Mar 12.

Antihypertensive actions of moderate hyperbilirubinemia: role of superoxide inhibition.

Author information

Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.



Moderate (approximately 2-fold) increases in plasma unconjugated bilirubin levels are able to attenuate the development of angiotensin II (Ang II)-dependent hypertension. To determine the specific role of decreases in superoxide production to the blood pressure-lowering effects of moderate hyperbilirubinemia (MHyB), we performed this study, in which the Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin was given to Ang II-infused mice in the presence and absence of moderate hyperbilirubinemia.


Apocynin (14mM) was administered in the drinking water prior to treatment with UDP-glucuronosyltransferase 1A1 antisense morpholino (16 μg/kg), which was administered by intravenous injection every third day. Treatments were started before the implantation of Ang II-containing minipumps (1μg/kg/min) and continued throughout the protocol.


Ang II infusion increased blood pressure to 145±2mm Hg. Apocynin treatment alone reduced blood pressure to 135±5mm Hg, whereas MHyB alone decreased blood pressure to 118±5mm Hg in Ang II-infused mice. Prior inhibition of NADPH oxidase with apocynin did not result in a further decrease in blood pressure in MHyB mice, which averaged 117±3mm Hg (n = 6 mice per group). In aortic preparations, apocynin treatment decreased Ang II-mediated superoxide production from 2433±120 relative light units (RLU)/min/mg to 1851±126 RLU/min/mg (n = 4 mice per group), which was similar to levels observed in MHyB mice alone (1473±132 RLU/min/mg) or in combination with apocynin (1503±115 RLU/min/mg).


Our results indicate that MHyB lowers blood pressure by a mechanism that is partially dependent on the inhibition of superoxide production.


NADPH oxidase; angiotensin II; bilirubin; blood pressure; heme oxygenase; hypertension

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center