Continuous emission of fundamental solitons from vortices in dissipative media by a radial-azimuthal potential

Opt Express. 2013 Mar 11;21(5):5561-6. doi: 10.1364/OE.21.005561.

Abstract

We report novel dynamical regimes of dissipative vortices supported by a radial-azimuthal potential (RAP) in the 2D complex Ginzburg-Landau (CGL) equation with the cubic-quintic nonlinearity. First, the stable solutions of vortices with intrinsic vorticity S = 1 and 2 are obtained in the CGL equation without potential. The RAP is a model of an active optical medium with respective expanding anti-waveguiding structures with m (integer) annularly periodic modulation. If the potential is strong enough, m jets fundamental of solitons are continuously emitted from the vortices. The influence of m, diffusivity term (viscosity) β, and cubic-gain coefficient ε on the dynamic region is studied. For a weak potential, the shape of vortices are stretched into the polygon, such as square for m = 4. But for a stronger potential, the vortices will be broke into m fundamental solitons.

Publication types

  • Research Support, Non-U.S. Gov't