Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2013 May;83(5):1109-19. doi: 10.1124/mol.112.083634. Epub 2013 Mar 11.

Neuroglobin, a novel intracellular hexa-coordinated globin, functions as a tumor suppressor in hepatocellular carcinoma via Raf/MAPK/Erk.

Author information

1
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, China.

Abstract

Hypoxia and oxidative stress are critical factors in carcinogenesis and exist throughout cancer development; however, the underlying mechanisms are far from clear. Here, for the first time to our knowledge, we reported that neuroglobin (Ngb), an intracellular hexa-coordinated globin serving as an oxygen/reactive oxygen species (ROS) sensor, functions as a tumor suppressor in hepatocelluar carcinoma (HCC). Ngb protein and mRNA expression were significantly down-regulated in tumor tissues, compared with its adjacent non-tumor tissues of human HCC samples and normal liver tissues. Knock-down of Ngb by RNA interference promoted human HCC cell line (HepG2) growth and proliferation, G0/G1-S transition in vitro, and tumor growth in vivo. On the contrary, overexpression of Ngb suppressed HepG2 cell growth and proliferation, G0/G1-S transition, colony formation in vitro, and tumorigenicity in vivo. These results established a tumor suppressor function of Ngb in HCC. The underlying mechanisms were further investigated. Overexpression of Ngb suppressed Raf/MEK/extracellular signal-regulated kinase (Erk), whereas knockdown of Ngb enhanced Raf/MEK/Erk activation in HepG2 cells in vitro and in vivo. Glutathione S-transferase pull-down showed that Ngb interacted with c-Raf-1 in HepG2 cells. Overexpression of Ngb suppressed serum- and H₂O₂-stimulated Erk activation in HepG2 cells. Pharmacological inhibition of Erk activation abolished the proliferative effect of Ngb knockdown in HepG2 cells. Mutation of Ngb at its oxygen-binding site (H64L) abolished the inhibitory effects of Ngb on Erk activation and HepG2 cell proliferation. Therefore, we propose that Ngb controls HCC development by linking oxygen/ROS signals to oncogenic Raf/mitogen-activated protein kinase (MAPK)/Erk signaling. Our data suggest that neuroglobin could be a new target for cancer therapy.

PMID:
23478801
DOI:
10.1124/mol.112.083634
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center